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Abstract
In the context of non-Hermitian but PT -symmetric Hamiltonians, we explore
the systematics of the coefficients of the multiple commutators that appear in
the perturbative expansions for Q, the exponent of the metric operator, and h, the
equivalent Hermitian Hamiltonian. We find exact expressions for both Q and h
for PT -symmetric versions of the dual two-dimensional quantum field theories,
the sine-Gordon model and the massive Thirring model, and elucidate how these
solutions arise from the structure of the multiple commutator coefficients.

PACS numbers: 03.65.−w, 03.65.Ge, 03.65.Ta, 11.10.Kk, 02.60.Lj

1. Introduction

Recent work on non-Hermitian systems has its origin in the seminal work of Bender and
Boettcher [1] on the reality of the spectrum of the quantum-mechanical potential ixN for
N � 2. The reason behind this reality was subsequently realized to be the existence of an
(unbroken) PT symmetry of the Hamiltonian.

However, a significant barrier to the physical interpretation of such theories was that the
natural metric in Hilbert space was indefinite. With the discovery [2] that there was another
metric, the CPT metric, which was indeed positive definite, this barrier was removed, although
this metric is dynamically determined by the Hamiltonian itself and needs to be calculated in
each case.

The mathematical basis for such theories was formalized by Mostafazadeh [3], with the
role of PT symmetry generalized to the property of pseudo-Hermiticity (see equation (1)), and
the metric η being recognized as generating a similarity transformation between the original
pseudo-Hermitian Hamiltonian H and an equivalent Hermitian Hamiltonian h. In the case of
PT -symmetric Hamiltonians, the role of η is played by PC. In [4], it was found convenient
to write C in the form C = eQP , where Q was a Hermitian operator satisfying PQ = −QP .
Hence in this case η = e−Q, as in equation (2), which is indeed a positive-definite Hermitian
operator.
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In the majority of cases Q can only be calculated in some approximation scheme, notably
perturbation theory, where successive terms in the expansion of Q have to be calculated by
solving commutation relations arising from the condition of pseudo-Hermiticity. The first
part of this contribution is concerned with finding the coefficients that occur in these multiple
commutators and understanding how they arise. We do the same thing for the coefficients in
the expansion of h.

In section 3, we give a rare example [5] of two related systems for which Q, and
subsequently h, can be calculated exactly by summing up the entire perturbation series.
Moreover, this is in quantum field theory rather than in quantum mechanics. The systems in
question are PT -symmetric versions of the well-known dual field theories in (1+1) dimensions,
the sine-Gordon model and the massive Thirring model.

In the appendix, we show how it is that these solutions arise given the structure of the
perturbative coefficients that we found in section 1.

2. Commutation relations

We are concerned with Hamiltonians that are not Hermitian, but are PT -symmetric, and hence
pseudo-Hermitian [3], i.e.

H † = ηHη−1. (1)

Here η is Hermitian and positive definite, and is usefully written as

η = e−Q, (2)

where Q is Hermitian. This is the operator first introduced in [4] as a useful tool in calculating
the C operator.

Let us specialize to the case where H = H0 + εH1, where H0 is Hermitian, i.e. H
†
0 = H0,

and H1 is anti-Hermitian, i.e. H
†
1 = −H1.

2.1. Commutation relations for Q

We are looking for a perturbative solution, whereby

Q =
∑

r

Qrε
r (r odd). (3)

In the first place equation (1) becomes

H † = e−QH eQ

= H + [H,Q] +
1

2!
[[H,Q],Q] +

1

3!
[[[H,Q],Q],Q]

+ · · · +
1

n!
[. . . [H,Q], . . . ,Q]︸ ︷︷ ︸

n commutators

+ · · · . (4)

Now insert H = H0 + εH1,Q = ∑
r Qrε

r and collect terms

−2H1 = [H0,Q1]

0 = [H0,Q3] +
1

2!
[[H1,Q1],Q1] +

1

3!
[[[H0,Q1],Q1],Q1]

0 = [H0,Q5] +
1

2!
([[H1,Q1],Q3] + [[H1,Q3],Q1]) +

1

3!
([[[H0,Q1],Q1],Q3] + perms)

+
1

4!
[[[[H1,Q1],Q1],Q1],Q1] +

1

5!
[[[[[H0,Q1],Q1],Q1],Q1],Q1]

. . . . (5)
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Here the coefficients are simple: just 1/n! for each n-fold commutator. But in each equation
we can use the previous equations to eliminate previously calculated [H0,Qr ]. The equations
then become

[H0,Q1] = −2H1,

[H0,Q3] = − 1
6 [[H1,Q1],Q1],

[H0,Q5] = − 1
6 ([[H1,Q1],Q3] + [[H1,Q3],Q1]) + 1

360 [[[[H1,Q1],Q1],Q1],Q1]

[H0,Q7] = − 1
6 [[H1,Q3],Q3] − 1

6 ([[H1,Q1],Q5] + [[H1,Q5],Q1])

+ 1
360 ([[[[H1,Q1],Q1],Q1],Q3] + perms)

− 1
15,120 [[[[[[H1,Q1],Q1],Q1],Q1],Q1],Q1],

. . . , (6)

with coefficients −1/6, 1/360,−1/15, 120, etc.
The fundamental question to ask is: what are these coefficients, and what is the general

coefficient?
By inspection of these and higher-order coefficients, it is possible to recognize cn, the

coefficient of the 2n-fold commutator, as

cn = − 2B2n

(2n)!

= coefficient of z2n in −z coth 1
2z. (7)

The supplementary question is why these coefficients should have anything to do with a
hyperbolic cotangent. The answer lies in the recursion relation whereby the cn are built up,
namely

cn = − 1

(2n)!
−

n∑
r=1

cn−r

(2r + 1)!
, (8)

where the sum arises from previous H0 commutators.
This happens to be the same as one of the recursion relations one can write for the

coefficients cn in

−z coth 1
2z =

∞∑
n=0

cnz
2n. (9)

Thus, multiplying both sides of equation (9) by ez/2 we obtain

−z(ez + 1) =
∞∑

n=0

cnz
2n(ez − 1), (10)

i.e.

−z

(
1 +

∞∑
n=0

zn

n!

)
=

∞∑
m=0

cmz2m

∞∑
s=1

zs

s!
. (11)

Equating coefficients of z2n+1 gives precisely equation (8).

2.2. Commutation relations for h

The equivalent Hermitian Hamiltonian h is given by

h = e−Q/2H eQ/2
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= H +
1

2
[H,Q] +

1

4 × 2!
[[H,Q],Q] +

1

8 × 3!
[[[H,Q],Q],Q]

+ · · · +
1

2n × n!
[. . . [H,Q], . . . ,Q]︸ ︷︷ ︸

n commutators

+ · · · . (12)

Inserting H = H0 + εH1,Q = ∑
r Qrε

r , h = ∑
r even hrε

r into these relations, the first
few equations are

h0 = H0

h2 = 1

2
[H1,Q1] +

1

4 × 2!
[[H0,Q1],Q1]

h4 = 1

2
[H1,Q3] +

1

4 × 2!
([[H0,Q1],Q3] + [[H0,Q3],Q1]) +

1

8 × 3!
[[[H1,Q1],Q1],Q1]

+
1

16 × 4!
[[[[H0,Q1],Q1],Q1],Q1]

h6 = 1

2
[H1,Q5] +

1

4 × 2!
([[H0,Q1],Q5] + [[H0,Q5],Q1]) +

1

4 × 2!
[[H0,Q3],Q3]

+
1

8 × 3!
([[[H1,Q1],Q1],Q3] + perms)

+
1

16 × 4!
([[[[H0,Q1],Q1],Q3],Q1] + perms)

+
1

32 × 5!
[[[[[H1,Q1],Q1],Q1],Q1],Q1]

+
1

64 × 6!
[[[[[[H0,Q1],Q1],Q1],Q1],Q1],Q1]. (13)

Again, the coefficients are simple: just 1/(2nn!). But eliminating [H0,Qr ] gives

h0 = H0

h2 = 1

4
[H1,Q1]

h4 = 1

4
[H1,Q3] − 1

192
[[[H1,Q1],Q1],Q1]

h6 = 1

4
[H1,Q5] − 1

192
([[[H1,Q1],Q1],Q3] + perms)

+
1

7680
[[[[[H1,Q1],Q1],Q1],Q1],Q1]

. . . . (14)

Once again we can ask: what are these coefficients and what is the general coefficient?
It turns out that an, the coefficient of the (2n − 1)-fold commutator, is

an = − E2n−1(0)

22n−1 × (2n − 1)!
,

= coefficient of z2n−1 in tanh(z/4). (15)

The reason again lies in the recursion relation generating the an, namely

an = 1

22n−1 × (2n − 1)!
+

n∑
r=1

cn−r

22r × (2r)!
, (16)
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which is the same as one of the recursion relations for the coefficients in

tanh(z/4) =
∞∑

n=1

anz
2n−1. (17)

Thus,

(z coth(z/2))(cosh(z/2) − 1) = −
( ∞∑

m=0

cmz2m

) ( ∞∑
r=1

z2r

22r × (2r)!

)

= −
∞∑

n=1

z2n

n∑
r=1

cn−r

22r × (2r)!
(18)

and

z sinh(z/2) =
∞∑

n=1

z2n

22n−1 × (2n − 1)!
. (19)

Subtracting gives

∞∑
n=1

anz
2n = z[sinh(z/2) − coth(z/2)(cosh(z/2) − 1)]

= z tanh(z/4). (20)

3. PT -symmetric versions of the sine-Gordon and massive Thirring models

3.1. Modified sine-Gordon model

The conventional sine-Gordon model, in (1+1) dimensions, has

LSG = 1

2
(∂µϕ)2 +

M2

λ2
(cos λϕ − 1), (21)

or correspondingly

HSG = 1

2
�2 +

1

2
(∇ϕ)2 +

M2

λ2
(1 − cos λϕ). (22)

As a modified version, which is PT -symmetric but not Hermitian, we consider

H = 1

2
�2 +

1

2
(∇ϕ)2 +

M2

λ2
(1 − cos λϕ − iε sin λϕ). (23)

So in this case H0 = HSG and H1 = −i(M2/λ2) sin λϕ.
The first few equations for the Qn are

[H0,Q1] = −2H1,

[H0,Q3] = − 1
6 [[H1,Q1],Q1], (24)

[H0,Q5] = − 1
6 ([[H1,Q1],Q3] + [[H1,Q3],Q1]) + 1

360 [[[[H1,Q1],Q1],Q1],Q1].

It is relatively easy to spot an ansatz for Q1 which will produce the desired result, namely

Q1 = ξ1

∫
x

�x. (25)
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Then

[H0,Q1] = ξ1

∫
xy

[
1

2
∂1ϕx∂1ϕx − M2

λ2
cos λϕ,�y

]

= iξ1

∫
x


 ∂2

1 ϕx︸ ︷︷ ︸∫ →0

+
M2

λ
sin λϕ︸ ︷︷ ︸

∝H1


 , (26)

by virtue of the equal-time canonical commutation relation [ϕx,�y] = iδxy . As indicated, the
first term integrates to zero and the second is proportional to H1. So the first of equations (24)
is satisfied provided that ξ1 = 2/λ.

Similarly, if we set Qr = ξr

∫
x
�x in general, the second equation is satisfied with

ξ3 = ξ1/3 and the third with ξ5 = ξ1/5.
We thus seem to be generating the series for tanh−1 ε, giving the all-orders result

Q = 2δ

λ

∫
x

�x, (27)

where δ = tanh−1 ε. Note that this result only makes sense for |ε| < 1.
We can verify the result a posteriori by constructing

h = e−(δ/λ)
∫
x
�x H e(δ/λ)

∫
x
�x . (28)

This just shifts ϕ: ϕ → ϕ + iδ/λ. Thus

cos λϕ + iε sin λϕ ≡ sech δ cos(λϕ − iδ)

→ sech δ cos λϕ. (29)

The equivalent Hermitian Hamiltonian h thus turns out to be the sine-Gordon model again,
but with bare mass M ′ given by

(M ′)2 = M2 sech δ = M2(1 − ε2)
1
2 . (30)

We can now understand the restriction |ε| < 1: the PT symmetry is spontaneously broken
for |ε| > 1, when M ′ becomes pure imaginary.

3.2. Modified massive Thirring model

The conventional massive Thirring model, again in (1+1) dimensions, has

LMT = ψ̄(i∂/ − m)ψ + 1
2g(ψ̄γ µψ)(ψ̄γµψ), (31)

or correspondingly

HMT = ψ̄(−i∇/ + m)ψ − 1
2g(ψ̄γ µψ)(ψ̄γµψ). (32)

This is equivalent to the sine-Gordon model, with the correspondence

λ2

4π
= 1

1 − g/π
, M2 = m�, (33)

where � is a renormalization scale. In particular λ = √
4π ↔ g = 0, the free fermion theory.

Our modified version involves a ‘γ5-dependent mass’:

H = ψ̄(−i∇/ + m(1 + εγ5))ψ − 1
2g(ψ̄γ µψ)(ψ̄γµψ). (34)

Here, γ0 = σ1, γ1 = iσ2, γ5 ≡ γ0γ1 = −σ3, so the additional term is again PT -symmetric
but non-Hermitian.



Equivalent Hamiltonians for PT-symmetric versions of dual 2D field theories 10129

First consider g = 0(λ = √
4π) and write

Q1 =
∫

xy

ψ †
x(G1)xyψy, H0 =

∫
xy

ψ †
xDxyψy, (35)

where D = γ0(−i∇/ + m) = −iγ5∂1 + mγ0.
Using the canonical equal-time anti-commutation relations

{
ψ

†
x, ψy

} = δxy , the equation
[H0,Q1] = −2H1 reads

−2m

∫
ψ̄γ5ψ =

∫
[ψ †Dψ,ψ †G1ψ]

=
∫

ψ †[D,G1]ψ

=
∫

ψ †[−iγ5∂1 + mγ0,G1]ψ, (36)

of which a particular solution is G1 = −γ5.
Similarly, if in general we set Gr = −ξrγ5, then equations (24) give ξ3 = 1/3 and

ξ5 = 1/5. Again, we seem to be generating the series for tanh−1 ε, with the all-orders result

Q = −δ

∫
x

(ψ †γ5ψ)x, (37)

where δ = tanh−1 ε, as before.
We can check this result by constructing

h = exp

(
1

2
δ

∫
x

(ψ †γ5ψ)x

)
H exp

(
−1

2
δ

∫
x

(ψ †γ5ψ)x

)
. (38)

By virtue of the Lorentz-like commutation relations

[γ5, γ0] = 2γ1, [γ5, γ1] = 2γ0, (39)

this is just

h = ψ̄(−i∇/ + µ)ψ, (40)

where µ = m sech δ = m(1 − ε2)
1
2 , in agreement with (30).

It is important to note that this Q also works for g 	= 0, since

(ψ̄γ µψ)(ψ̄γµψ) = (ψ †ψ)2 − (ψ †γ5ψ)2. (41)

Each term on the right-hand side commutes with Q = −δ
∫
x
(ψ †γ5ψ)x .

Thus, the only effect on H is to change the γ5-dependent mass term mψ̄(1 + εγ5)ψ to a
normal mass term µψ̄ψ . Again, the PT symmetry is broken if |ε| > 1 because µ becomes
pure imaginary.

3.2.1. Another solution. As usual, Q is not unique, as has been discussed in [6–8]. At any
stage in the solution of the commutation relations (6) for Qr , we can add to Qr anything that
commutes with H0. In the present case, most of the other solutions would be unsatisfactory for
one reason or another. We illustrate the point by presenting an interesting alternative solution,
namely

G = iγ5 tanh−1
(εm

∇/
)
. (42)

This mixes the kinetic term and the γ5 mass term. In the free-field case g = 0 the corresponding
h is

h = ψ̄

[
m − i∇/

(
1 +

ε2m2

∂2

) 1
2
]

ψ, (43)
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which is a rather perverse way of writing the free-field theory with mass µ! Thus the equation
of motion is [

∂2
0 − ∂2

(
1 +

ε2m2

∂2

)]
ψ = −m2ψ, (44)

i.e.

∂2ψ = −m2(1 − ε2)︸ ︷︷ ︸
µ2

ψ. (45)

This Q is unsatisfactory because it is non-local and moreover only defined in a limited range
of p-space.

4. Conclusions

In this contribution, we have identified the coefficients of the multiple commutators involved
in the perturbative expansions for the Q operator, determined by

H † = e−QH eQ, (46)

and for the equivalent Hermitian Hamiltonian h, then given by

h = e− 1
2 QH e

1
2 Q. (47)

In the context of (1+1)-dimensional field theory, we have found exact expressions for Q
and h in PT -symmetric versions of the sine-Gordon and massive Thirring models. The
appendix shows how these solutions can be understood in terms of the properties of the above
coefficients.
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Appendix. Relation to the commutator coefficients

In this appendix, we elucidate how the functions of section 3, the arctanh and the sech, arise
from the coefficients we found in section 2, which generate coth and tanh, respectively.

A.1. Structure of Q

The important feature to note here is that the Qr of section 3 all have the same structure,
Qr = αrQ1, so that Q = ( ∑∞

r αrε
r
)
Q1.

Therefore, from

[H0,Q1] = c0H1, [H0,Q3] = c1[[H1,Q1],Q1], (A.1)

we get

[[H1,Q1],Q1] = α3
c0

c1
H1 = 4H1 (A.2)

(recall that α3 = 1/3, c0 = −2, c1 = −1/6).
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Then the equation

[H0,Q5] = c1([[H1,Q1],Q3] + [[H1,Q3],Q1]) + c2[[[[H1,Q1],Q1],Q1],Q1] (A.3)

becomes

−2α5H1 = [
2(4c1)α1α3 + (16c2)α

4
1

]
H1, (A.4)

which gives α5 = 1/5.
In fact all the equations can be generated by the expansion of

−2
∞∑

r odd

αrε
r = ε

∞∑
r=0

4rcr︸︷︷︸
ĉr

(α1ε + α3ε
3 + α5ε

5 + · · ·)2r , (A.5)

namely

−2α1 = ĉ0

−2α3 = ĉ1α
2
1

−2α5 = 2ĉ1α1α3 + ĉ2α
4
1

−2α7 = ĉ1
(
2α1α5 + α2

3

)
+ 4ĉ2α

3
1α3 + ĉ3α

6
1

. . . . (A.6)

Here, the multiplicities are the number of permutations of a given commutator structure.
Then, assuming that αr are the coefficients of arctanh, equation (A.5) reads

−2δ = ε

∞∑
r

cr (2δ)2r

= tanh δ(−2δ coth δ), (A.7)

which is indeed consistent.

A.2. Structure of h

With [[H1,Q1],Q1] = 4H1 and [H1,Q1] = −2H0, the equations for h, namely

h2 = a1[H1,Q1],

h4 = a1[H1,Q3] + a2[[[H1,Q1],Q1],Q1], (A.8)

h6 = a1[H1,Q5] + a2([[[H1,Q1],Q1],Q3] + perms) + a3[[[[[H1,Q1],Q1],Q1],Q1],Q1],

become

h2 = −2â1α1H0,

h4 = −2
(
â1α3 + â2α

3
1

)
H0, (A.9)

h6 = −2
(
â1α5 + 3â2α

2
1α3 + â3α

5
1

)
H0,

where âr = 4r−1ar .
Again, h ≡ ∑

hrε
r is generated by

1 − 2ε

∞∑
r=1

âr (α1ε + α3ε
3 + α5ε

5 + · · ·)2r−1

= 1 − ε

∞∑
r=1

ar(2δ)2r−1

= 1 − tanh δ × tanh(δ/2)

= sech δ. (A.10)
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